package internal import ( "encoding/json" "fmt" "math" "strconv" "testing" "time" "github.com/alicebob/miniredis" "github.com/stretchr/testify/assert" "github.com/tal-tech/go-zero/core/errorx" "github.com/tal-tech/go-zero/core/hash" "github.com/tal-tech/go-zero/core/stores/redis" "github.com/tal-tech/go-zero/core/syncx" ) type mockedNode struct { vals map[string][]byte errNotFound error } func (mc *mockedNode) DelCache(keys ...string) error { var be errorx.BatchError for _, key := range keys { if _, ok := mc.vals[key]; !ok { be.Add(mc.errNotFound) } else { delete(mc.vals, key) } } return be.Err() } func (mc *mockedNode) GetCache(key string, v interface{}) error { bs, ok := mc.vals[key] if ok { return json.Unmarshal(bs, v) } return mc.errNotFound } func (mc *mockedNode) SetCache(key string, v interface{}) error { data, err := json.Marshal(v) if err != nil { return err } mc.vals[key] = data return nil } func (mc *mockedNode) SetCacheWithExpire(key string, v interface{}, expire time.Duration) error { return mc.SetCache(key, v) } func (mc *mockedNode) Take(v interface{}, key string, query func(v interface{}) error) error { if _, ok := mc.vals[key]; ok { return mc.GetCache(key, v) } if err := query(v); err != nil { return err } return mc.SetCache(key, v) } func (mc *mockedNode) TakeWithExpire(v interface{}, key string, query func(v interface{}, expire time.Duration) error) error { return mc.Take(v, key, func(v interface{}) error { return query(v, 0) }) } func TestCache_SetDel(t *testing.T) { const total = 1000 r1 := miniredis.NewMiniRedis() assert.Nil(t, r1.Start()) defer r1.Close() r2 := miniredis.NewMiniRedis() assert.Nil(t, r2.Start()) defer r2.Close() conf := ClusterConf{ { RedisConf: redis.RedisConf{ Host: r1.Addr(), Type: redis.NodeType, }, Weight: 100, }, { RedisConf: redis.RedisConf{ Host: r2.Addr(), Type: redis.NodeType, }, Weight: 100, }, } c := NewCache(conf, syncx.NewSharedCalls(), NewCacheStat("mock"), errPlaceholder) for i := 0; i < total; i++ { if i%2 == 0 { assert.Nil(t, c.SetCache(fmt.Sprintf("key/%d", i), i)) } else { assert.Nil(t, c.SetCacheWithExpire(fmt.Sprintf("key/%d", i), i, 0)) } } for i := 0; i < total; i++ { var v int assert.Nil(t, c.GetCache(fmt.Sprintf("key/%d", i), &v)) assert.Equal(t, i, v) } for i := 0; i < total; i++ { assert.Nil(t, c.DelCache(fmt.Sprintf("key/%d", i))) } for i := 0; i < total; i++ { var v int assert.Equal(t, errPlaceholder, c.GetCache(fmt.Sprintf("key/%d", i), &v)) assert.Equal(t, 0, v) } } func TestCache_Balance(t *testing.T) { const ( numNodes = 100 total = 10000 ) dispatcher := hash.NewConsistentHash() maps := make([]map[string][]byte, numNodes) for i := 0; i < numNodes; i++ { maps[i] = map[string][]byte{ strconv.Itoa(i): []byte(strconv.Itoa(i)), } } for i := 0; i < numNodes; i++ { dispatcher.AddWithWeight(&mockedNode{ vals: maps[i], errNotFound: errPlaceholder, }, 100) } c := cacheCluster{ dispatcher: dispatcher, errNotFound: errPlaceholder, } for i := 0; i < total; i++ { assert.Nil(t, c.SetCache(strconv.Itoa(i), i)) } counts := make(map[int]int) for i, m := range maps { counts[i] = len(m) } entropy := calcEntropy(counts, total) assert.True(t, len(counts) > 1) assert.True(t, entropy > .95, fmt.Sprintf("entropy should be greater than 0.95, but got %.2f", entropy)) for i := 0; i < total; i++ { var v int assert.Nil(t, c.GetCache(strconv.Itoa(i), &v)) assert.Equal(t, i, v) } for i := 0; i < total/10; i++ { assert.Nil(t, c.DelCache(strconv.Itoa(i*10), strconv.Itoa(i*10+1), strconv.Itoa(i*10+2))) assert.Nil(t, c.DelCache(strconv.Itoa(i*10+9))) } var count int for i := 0; i < total/10; i++ { var val int if i%2 == 0 { assert.Nil(t, c.Take(&val, strconv.Itoa(i*10), func(v interface{}) error { *v.(*int) = i count++ return nil })) } else { assert.Nil(t, c.TakeWithExpire(&val, strconv.Itoa(i*10), func(v interface{}, expire time.Duration) error { *v.(*int) = i count++ return nil })) } assert.Equal(t, i, val) } assert.Equal(t, total/10, count) } func calcEntropy(m map[int]int, total int) float64 { var entropy float64 for _, v := range m { proba := float64(v) / float64(total) entropy -= proba * math.Log2(proba) } return entropy / math.Log2(float64(len(m))) }