package executors import ( "reflect" "sync" "time" "zero/core/proc" "zero/core/syncx" "zero/core/threading" "zero/core/timex" ) const idleRound = 10 type ( // A type that satisfies executors.TaskContainer can be used as the underlying // container that used to do periodical executions. TaskContainer interface { // AddTask adds the task into the container. // Returns true if the container needs to be flushed after the addition. AddTask(task interface{}) bool // Execute handles the collected tasks by the container when flushing. Execute(tasks interface{}) // RemoveAll removes the contained tasks, and return them. RemoveAll() interface{} } PeriodicalExecutor struct { commander chan interface{} interval time.Duration container TaskContainer waitGroup sync.WaitGroup // avoid race condition on waitGroup when calling wg.Add/Done/Wait(...) wgBarrier syncx.Barrier guarded bool newTicker func(duration time.Duration) timex.Ticker lock sync.Mutex } ) func NewPeriodicalExecutor(interval time.Duration, container TaskContainer) *PeriodicalExecutor { executor := &PeriodicalExecutor{ // buffer 1 to let the caller go quickly commander: make(chan interface{}, 1), interval: interval, container: container, newTicker: func(d time.Duration) timex.Ticker { return timex.NewTicker(interval) }, } proc.AddShutdownListener(func() { executor.Flush() }) return executor } func (pe *PeriodicalExecutor) Add(task interface{}) { if vals, ok := pe.addAndCheck(task); ok { pe.commander <- vals } } func (pe *PeriodicalExecutor) Flush() bool { return pe.executeTasks(func() interface{} { pe.lock.Lock() defer pe.lock.Unlock() return pe.container.RemoveAll() }()) } func (pe *PeriodicalExecutor) Sync(fn func()) { pe.lock.Lock() defer pe.lock.Unlock() fn() } func (pe *PeriodicalExecutor) Wait() { pe.wgBarrier.Guard(func() { pe.waitGroup.Wait() }) } func (pe *PeriodicalExecutor) addAndCheck(task interface{}) (interface{}, bool) { pe.lock.Lock() defer func() { var start bool if !pe.guarded { pe.guarded = true start = true } pe.lock.Unlock() if start { pe.backgroundFlush() } }() if pe.container.AddTask(task) { return pe.container.RemoveAll(), true } return nil, false } func (pe *PeriodicalExecutor) backgroundFlush() { threading.GoSafe(func() { ticker := pe.newTicker(pe.interval) defer ticker.Stop() var commanded bool last := timex.Now() for { select { case vals := <-pe.commander: commanded = true pe.executeTasks(vals) last = timex.Now() case <-ticker.Chan(): if commanded { commanded = false } else if pe.Flush() { last = timex.Now() } else if timex.Since(last) > pe.interval*idleRound { pe.lock.Lock() pe.guarded = false pe.lock.Unlock() // flush again to avoid missing tasks pe.Flush() return } } } }) } func (pe *PeriodicalExecutor) executeTasks(tasks interface{}) bool { pe.wgBarrier.Guard(func() { pe.waitGroup.Add(1) }) defer pe.wgBarrier.Guard(func() { pe.waitGroup.Done() }) ok := pe.hasTasks(tasks) if ok { pe.container.Execute(tasks) } return ok } func (pe *PeriodicalExecutor) hasTasks(tasks interface{}) bool { if tasks == nil { return false } val := reflect.ValueOf(tasks) switch val.Kind() { case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice: return val.Len() > 0 default: // unknown type, let caller execute it return true } }